Multivariate longitudinal models for complex change processes

Beckett, L A, D J Tancredi and R S Wilson

Stat Med. 2004. 23(2):231-9.

Longitudinal studies offer us an opportunity to develop detailed descriptions of the process of growth and development or of the course of progression of chronic diseases. Most longitudinal analyses focus on characterizing change over time in a single outcome variable and identifying predictors of growth or decline. Both growth and degenerative diseases, however, are complex processes with multiple markers of change, so that it may be important to model more than one outcome measure and to understand their relationship over time. We consider random effects models for the association between the trajectories of two outcomes over time, and then compare their properties to approaches based on separate ordinary least-squares estimates of change. We then illustrate with an example from the Religious Orders Study, a longitudinal cohort study of more than 900 members of Catholic religious orders who have had up to eight annual clinical examinations.

Keywords: Aged; Alzheimer Disease/*etiology; Chronic Disease; Comparative Study; Humans; Longitudinal Studies; *Models, Statistical; *Multivariate Analysis; Research Support, U.S. Gov't, P.H.S.

Close Window

UC Davis Health System is pleased to provide this information for general reference purposes only. It should not be considered as a substitute for professional medical advice. You are urged to consult with your health care provider for diagnosis of and treatment for any health-related condition. The information provided herein may not and should not be used for diagnosis and treatment.

Reproduction of material on this web site is hereby granted solely for personal use. No other use of this material is authorized without prior written approval of UC Regents.